Indian Statistical Institute, Bangalore Centre

B.Math III Year, First Semester Mid-Sem Examination Differential Equations September 14, 2012

Time: 3 Hours

Instructor: C.R.E. Raja Total Marks : 50

Answer any five, each question carries 10 marks, total marks: 50

- 1. (a) Prove that the solution of y' + P(x)y = Q(x) is $y = e^{-\int Pdx} (\int Qe^{\int Pdx} dx + c)$ where c is a constant.
 - (b) Solve the equation $xy' = y + 2xe^{-y/x}$.
- 2. (a) Let Mdx + Ndy = 0 be the given ODE. If g = My-Nx / 2xyN-x²M is a function of z = x²y, does the equation has an integrating factor? Justify your answer.
 (b) Solve x²y'' = 2xy' + (y')².
- 3. (a) If y_1, y_2 are solutions of y'' + P(x)y' + Q(x)y = R(x) on \mathbb{R} where P, Q, R are continuous function on \mathbb{R} . Prove that $\{x \in \mathbb{R} \mid y_1(x) = y_2(x)\}$ is countable.

(b) Is there a ode y'' + P(x)y' + Q(x)y = 0 that has $f(x) = x^3$ and $g(x) = x^2|x|$ as solutions on [-1, 1] where P, Q are continuous functions on [-1, 1]. Justify.

- 4. Let y_1, y_2 be two solutions of y'' + P(x)y' + Q(x) = 0 and W be the Wronskian of y_1 and y_2 .
 - (a) Prove that W is always zero or never zero.

(b) Prove that W has a zero if and only if y_1 and y_2 are linearly dependent solutions.

- 5. Let y be a solution of the ode y'' + py' + qy = 0 where p, q are constants.
 - (a) Prove that y is infinitely many times differentiable.
 - (b) y and all its derivatives are also solutions of y'' + py' + qy = 0.
 - (c) Solve the equation $2x^2y'' + 10xy' + 8y = 0$.
- 6. (a) Find the general solution of the following system of ode x'(t) = -x y and y'(t) = x 2y.

(b) Find the general series solution of the equation y'' - 2xy' + 2py = 0 where p is a constant.

7. (a) Find a solution of the ode $(1 + x^2)y'' + 2xy' - 2y = 0$ using power series method.

(b) Show that the equation $x^2y'' + xy' + (x^2 - 1)y = 0$ has only one Frobenius series solution and find the solution.